Combinatorial Properties of a Rooted Graph Polynomial

نویسندگان

  • David Eisenstat
  • Gary Gordon
  • Amanda Redlich
چکیده

For a rooted graph G, let EV (G; p) be the expected number of vertices reachable from the root when each edge has an independent probability p of operating successfully. We examine combinatorial properties of this polynomial, proving that G is k-edge connected iff EV ′(G; 1) = · · · = EV k−1(G; 1) = 0. We find bounds on the first and second derivatives of EV (G; p); applications yield characterizations of rooted paths and cycles in terms of the polynomial. We prove reconstruction results for rooted trees and a negative result concerning reconstruction of more complicated rooted graphs. We also prove the norm of the largest root of EV (G; p) in Q[i] gives a sharp lower bound on the number of vertices of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the greedoid polynomial for rooted graphs and rooted digraphs

We examine some properties of the 2-variable greedoid polynomial f(G;t, z) when G is the branching greedoid associated to a rooted graph or a rooted directed graph. For rooted digraphs, we show a factoring property of f (G;t ,z) determines whether or not the rooted digraph has a directed cycle.

متن کامل

A POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE

The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...

متن کامل

A characteristic polynomial for rooted graphs and rooted digraphs

We consider the one-variable characteristic polynomial p(G; ) in two settings. When G is a rooted digraph, we show that this polynomial essentially counts the number of sinks in G. When G is a rooted graph, we give combinatorial interpretations of several coe/cients and the degree of p(G; ). In particular, |p(G; 0)| is the number of acyclic orientations of G, while the degree of p(G; ) gives th...

متن کامل

A Character Theoretic Approach to Embed Dings of Rooted Maps in an Orientable Surface of given Genus

The group algebra of the symmetric group and properties of the irreducible characters are used to derive combinatorial properties of embeddings of rooted maps in orientable surfaces of arbitrary genus. In particular, we show that there exists, for each genus, a correspondence between the set of rooted quadrangulations and a set of rooted maps of all lower genera with a distinguished subset of v...

متن کامل

Chromatic and Tutte Polynomials for Graphs, Rooted Graphs and Trees

The chromatic polynomial of a graph is a one-variable polynomial that counts the number of ways the vertices of a graph can be properly colored. It was invented in 1912 by G.D. Birkhoff in his unsuccessful attempt to solve the four-color problem. In the 1940’s, Tutte generalized Birkhoff’s polynomial by adding another variable and analyzing its combinatorial properties. The Tutte polynomial its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008